Benomyl 苯菌灵

请下载《资料收集库-农药电子书》获得更多农药资料。想获得更多更系统的农药资料?想创建自己的农资电子书?请访问 http://www.9ele.com/pesticide.html

苯菌灵

苯菌灵为内吸性杀菌剂,在植物体内代谢为多菌灵及另一种有挥发性异氰酸丁酯,是其主要杀菌物质。纯品为白色结晶,略有臭味。不溶于水,可溶于有机溶剂,在干操状态 下稳定,遇潮湿会分解减效。对人畜低毒,对作物安全。

苯菌灵 又名苯来特。
ISO通用名称:benomyl
CIPAC数字代号:206
化学名:1-正丁氨基甲酰-2-苯并咪唑氨基甲酸甲酯
methyl-1-(butylcarbamoyl)-2-benzimidazol-carbamate
商品名:苯来特
结构式: 
分子式:C14H18N4O3
分子量:290.3药剂特性

主要剂型
50%可湿性粉剂。

防治对象及使用方法
苯菌灵可用于防治蔬菜、果树、稻麦等作物的多种病害,常用作拌种、喷雾和土壤处理,除有保护和治疗作用外,还具有杀螨作用。
(l)防治瓜类白粉病,黄瓜和甜(辣)椒的炭疽病,西红柿灰霉病、叶霉病,黄瓜菌核病,用1500-2000倍液喷雾,发病初期开始每隔7-10天喷1次,连喷3次。
(2)防治茄子黄萎病、褐纹病,取50%苯菌灵和50%福美双可湿性粉剂各1份,混拌均匀,而后再与填充剂(细土或炉灰等)3份混匀,用种子重量0.1%的混合药剂拌种。
(3)防治黄瓜枯萎病,用500-1000倍液于发病初期灌根,每株每次灌0.25-0.3公斤。

注意事项
(1)苯菌灵可与多种农药混用,但不能与强碱性药剂及含铜制剂混用。
(2)为避免产生抗性,应与其他杀菌剂交替使用。但不宜与多菌灵、硫菌灵等与苯菌灵存在交互抗性的杀菌剂作为替换药剂。

性 状
纯品为无色结晶固体;熔点前分解,不易挥发。溶解度(25℃):约4mg/kg水(pH3~10),极易溶(pH1),在pH13下分解;约18g/kg丙酮;约94g/kg氯仿;约53g/kg二甲基甲酰胺;约4g/kg乙醇;约400g/kg庚烷;约10g/kg二甲苯。稳定性:在某些溶剂中离解形成多菌灵和异氰酸丁酯;在水中溶解并在各种pH值下稳定。对光稳定。遇水及在潮湿土壤中分解。

毒 性
大鼠急性经口LD50>1000mg AI/kg,兔急性经皮LD50>10000mg/kg;对豚鼠皮肤无刺激性,对兔眼有轻微刺激。对大鼠急性吸入LC50(4-h)>2mg/L空气。两年饲喂无作用剂量:大鼠>2500mg/kg饲料(最大试验量)无组织病理学变化。狗500mg/kg饲料。人允许摄入量为0.02mg/kg体重。对野鸭和鹌鹑的LC50(8d)为>500mg/kg饲料。鱼毒性LC50(96h):金鱼4.2mg/L,虹鳟鱼0.17mg/L。

应 用
苯菌灵为内吸性杀菌剂,具有保护、铲除和治疗作用。对谷类作物、葡萄、仁果及核果类、水稻及蔬菜上的子囊菌纲、半知菌纲及某些担子菌纲的真菌引起的病害有防效。还可用于防治螨类,主要用作杀卵剂。用于收获前及收获后喷雾及浸渍,可防止水果及蔬菜的腐烂。用量为:田间及蔬菜作物,140~550g AI/ha;果树550~1100g/ha;收获后使用25~200g/hL。在某些条件下,在土壤、植物及动物体内可以形成多菌灵。苯菌灵50%制剂稀释到2000~3000倍能防治梨、葡萄、苹果的白粉病,梨黑星病,桃灰星病,葡萄褐斑病,苹果黑星病,小麦赤霉病,油菜菌核病,稻瘟病,棉花立枯病。

 

Refer to <docbook-pesticides> for more data. Want more and better data of pesticides? Create your own ebook? Please visit: http://www.9ele.com/pesticide_en.html

benomyl
Fungicide
FRAC 1, B1; benzimidazole

  Benomyl

NOMENCLATURE
Common name benomyl (BSI, E-ISO, (m) F-ISO, ANSI, JMAF)
IUPAC name methyl 1-(butylcarbamoyl)benzimidazol-2-ylcarbamate
Chemical Abstracts name methyl [1-[(butylamino)carbonyl]-1H-benzimidazol-2-yl]carbamate
CAS RN [17804-35-2] EEC no. 241-775-7 Development codes T 1991 (DuPont)

PHYSICAL CHEMISTRY
Mol. wt. 290.3 M.f. C14H18N4O3 Form Colourless crystals. M.p. 140 ºC (decomp.) V.p. <5.0 ´ 10-3 mPa (25 ºC) KOW logP = 1.37 Henry <4.0 ´ 10-4 (pH 5); <5.0 ´ 10-4 (pH 7); <7.7 ´ 10-4 (pH 9) (all in Pa m3 mol-1, calc.) S.g./density Bulk density 0.38 Solubility In water 3.6 (pH 5), 2.9 (pH 7), 1.9 (pH 9) (all in mg/l, room temperature). In chloroform 94, dimethylformamide 53, acetone 18, xylene 10, ethanol 4, heptane 0.4 (all in g/kg, 25 ºC). Stability Hydrolysis DT50 3.5 h (pH 5), 1.5 h (pH 7), <1 h (pH 9) (all 25 °C). In some solvents, dissociates to form carbendazim and butyl isocyanate (M. Chiba & E. A. Cherniak, J. Agric. Food Chem., 1978, 26, 573). Solubility in water and stability at various pH values investigated by R. P. Singh & M. Chiba (ibid., 1985, 33, 63). Stable to light. Decomposed on storage in contact with water and under moist conditions in soil. Mechanism of the acid-catalysed decomposition in aqueous media, J. P. Calmon & D. R. Sayag(ibid., 1976, 24, 314, 317).

COMMERCIALISATION
History Fungicide reported by C. J. Delp & H. L. Klopping (Plant Dis. Rep., 1968, 52, 95). Introduced by E. I. du Pont de Nemours and Co. in 1970, who ceased marketing it in 2001. Patents NL 6706331; US 3631176 Manufacturers Agro-Chemie; Aragro; CAC; Gilmore; Jiangsu Eternal; Sannong; Sharda; Sinon; Sundat

APPLICATIONS
Biochemistry Inhibits mitosis by binding to beta-tubuline. Mode of action Systemic fungicide with protective and curative action. Absorbed through the leaves and roots, with translocation principally acropetally. Uses Effective against a wide range of Ascomycetes, and Fungi Imperfecti and some Basidiomycetes in cereals, grapes, pome and stone fruit, rice and vegetables. It is also effective against mites, primarily as an ovicide. Also used as pre-harvest sprays or dips for the control of storage rots of fruit and vegetables. Typical rates are: on field and vegetable crops, 140-550 g a.i./ha; on tree crops 550-1100 g/ha; for post-harvest uses 25-200 g/hl. Phytotoxicity Non-phytotoxic if used as directed. Russetting is possible with Golden Delicious apples. Formulation types WP. Compatibility Incompatible with alkaline materials. Selected products: 'Cekumilo' (Cequisa); 'Fundazol' (Agro-Chemie); 'Gilomyl' (Gilmore); 'Pilarben' (Pilarquim); 'Romyl' (Rotam); 'Viben' (Vipesco)

OTHER PRODUCTS
'Benex' (Crystal) mixtures: 'Benlate T' (+ thiram) (Hokko); 'Viben-C' (+ copper oxychloride) (Vipesco) Discontinued products: 'Benlate' * (DuPont); 'Agrocit' * (Agro-Chemie); 'Benor' * (Aragro); 'Benzole' * (Agro Chemicals)

ANALYSIS
Product analysis by i.r. spectrometry (F. J. Baude et al., Anal. Methods Pestic. Plant Growth Regul., 1978, 10, 157) or by rplc (AOAC Methods, 17th Ed., 984.09; CIPAC Handbook, 1988, D, 14). Residues determined by cation-exchange hplc (J. J. Kirkland et al., J. Agric. Food Chem., 1973, 21, 368; N. Aharonson & A. Ben-Aziz, J. Assoc. Off. Anal. Chem., 1973, 56, 481; J. E. Farrow et al., Analyst (London), 1977,102, 752). Benomyl can be converted to a derivative and differentiated from carbendazim by hplc (M. Chiba & R. P. Singh, J. Agric. Food Chem., 1986, 34, 108).

MAMMALIAN TOXICOLOGY
Reviews FAO/WHO 74, 76 (see part 2 of the Bibliography). Oral Acute oral LD50 for rats >5000 mg a.i./kg. Skin and eye Acute percutaneous LD50 for rabbits >5000 mg/kg; negligible irritant to skin, temporary to eyes (rabbits). Inhalation LC50 (4 h) for rats >2 mg/l air. NOEL (2 y) for rats >2500 mg/kg diet (maximum rate tested), no evidence of histopathological changes; for dogs 500 mg/kg diet. ADI (JMPR) 0.1 mg/kg b.w. [1995]; residues should be compared against the ADI for carbendazim; environmental assessment also performed. Toxicity class WHO (a.i.) U; EPA (formulation) IV EC classification R68

ECOTOXICOLOGY
Birds Dietary LC50 (8 d) for mallard ducks and bobwhite quail >10 000 mg/kg diet (using 50% formulation). Fish LC50 (96 h) for rainbow trout 0.27, goldfish 4.2 mg/l. LC50 (48 h) for guppy 3.4 mg/l. Daphnia LC50 (48 h) 640 mg/l. Algae EbC50 (72 h) 2.0 mg/l, (120 h) 3.1 mg/l. Bees Not toxic to bees. LD50 (contact) >50 mg/bee. Worms LC50 (14 d) 10.5 mg/kg.

ENVIRONMENTAL FATE
EHC 148 (WHO, 1993). EHC 148 concludes that, although benomyl is highly toxic to aquatic organisms, this effect is unlikely to be seen in the field due to the low bioavailability of sediment-bound residues. Earthworm populations may take more than two years to recover following field application. Animals In animals, the butylcarbamoyl group is removed to give the relatively stable carbendazim, followed by slow degradation to non-toxic 2-aminobenzimidazole. Hydroxylation also occurs, and the principal metabolite 5-hydroxybenzimidazole carbamate is converted to the O- and N-conjugates; other possible metabolites include 4-hydroxy-2-benzimidazolemethylcarbamate. Benomyl and its metabolites are excreted in the urine and faeces within a few days, with no accumulation in animal tissue. Plants In plants, the butylcarbamoyl group is removed to give the relatively stable carbendazim, followed by slow degradation to non-toxic 2-aminobenzimidazole. Further degradation involves cleavage of the benzimidazole nucleus. Benomyl per se is stable on the surface of banana skins (J. Cox et al., Pestic. Sci., 1974, 5, 135; J. Cox & J. A. Pinegar, ibid., 1976, 7, 193). Soil/Environment Benomyl is rapidly converted to carbendazim in the environment, DT50 2 and 19 h in water and in soil, respectively. Data from studies on both benomyl and carbendazim are therefore relevant for the evaluation of environmental effects. Koc 1900.